Computer programs utilized include SHELXS886 (Sheldrick, 1990) for structure solution, SHELX76 (Sheldrick, 1976) for structure refinement, ORTEP (Johnson, 1976) for the preparation of Fig. 1 and SYBYL (Tripos Associates, 1993) for the preparation of Fig. 2.

Lists of structure factors and anisotropic displacement parameters have been deposited with the IUCr (Reference: BR1061). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Begley, M. J., Hall, M., Nunn, M. \& Sowerby, D. B. (1986). J. Chem. Soc. Dalton Trans. pp. 1735-1739.
Hall, M. \& Sowerby, D. B. (1979). J. Chem. Soc. Chem. Commun. pp. 1134-1135.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Rheingold, A. L., Landers, A. G., Dahlstrom, P. \& Zubieta, J. (1979). J. Chem. Soc. Chem. Commun. pp. 143-144.

Sawyer, J. F. \& Gillespie, R. J. (1986). Prog. Inorg. Chem. 34, 65-113.
Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Tripos Associates (1993). SYBYL. St Louis, Missouri, USA.

Acta Cryst. (1994). C50, 1529-1531

Hexagonal $\mathrm{Yb}_{6} \mathrm{Cr}_{4+\mathrm{x}} \mathrm{Al}_{43-\mathrm{x}}(\boldsymbol{x}=\mathbf{1 . 7 6})$ with a New Structure Type

T. I. Yanson, M. B. Manyako, O. I. Bodak and O. S. Zarechnyuk

Department of Inorganic Chemistry, L'viv University, 6 Lomonosova Street, 290005 L'viv 5, Ukraine

R. E. GladyshevskiI, R. Cerny \dagger and K. Yvon
Laboratoire de Cristallographie, Université de Genève, 24 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland

(Received 5 October 1993; accepted 7 April 1994)

Abstract

The title compound contains one Yb , two Cr and seven Al sites, one of which is about half occupied by Cr . The coordination polyhedron of Yb has the composition $\left[\mathrm{Cr}(\mathrm{Al}, \mathrm{Cr})_{2} \mathrm{Al}_{13} \mathrm{Yb}\right]$, while those around Cr are $\left[\mathrm{Al}_{10} \mathrm{Yb}_{2}\right]$ and $\left[\mathrm{Al}_{12}\right]$, and that around the mixed site is $\left[\mathrm{Al}_{9} \mathrm{Yb}_{3}\right]$.

^[\dagger On leave from: Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116 Prague 2, Czech Republic.]

Comment

Aluminium-rich rare-earth (R) transition-metal (T) compounds of approximate composition $R T \mathrm{Al}_{8}$ are known for $R=\mathrm{Y}, \mathrm{Dy}, \mathrm{Sm}, \mathrm{Tb}$ and $T=\mathrm{V}, \mathrm{Cr}$ (Zarechnyuk, Rykhal' \& German, 1971; Rykhal', Zarechnyuk \& Mats'kiv, 1979; Zarechnyuk, Yanson, Ostrovskaya \& Shevchuk, 1988). Investigation of the system Yb-Cr-Al at 773 K revealed the existence of a similar compound.

The structure of $\mathrm{Yb}_{6} \mathrm{Cr}_{4+x} \mathrm{Al}_{43-x}$ is of a new type. It contains one Yb , two Cr and seven Al sites, one of which is occupied partially by Cr (Fig. 1). The coordination polyhedron of Yb has 17 vertices and composition $\left[\mathrm{Cr}(\mathrm{Al}, \mathrm{Cr})_{2} \mathrm{Al}_{13} \mathrm{Yb}\right]$. The polyhedra of the two ordered chromium sites $\mathrm{Cr}(1)$ and $\mathrm{Cr}(2)$, and the disordered metal site $\mathrm{Al}(6)\left(\equiv \mathrm{Al}_{0.56} \mathrm{Cr}_{0.44}\right)$ each have 12 vertices; their compositions are $\left[\mathrm{Al}_{10} \mathrm{Yb}_{2}\right]$, $\left[\mathrm{Al}_{12}\right]$ and $\left[\mathrm{Al}_{9} \mathrm{Yb}_{3}\right]$, respectively. The polyhedra around $\mathrm{Cr}(1)$ and $\mathrm{Al}(6)$ each have a deformed icosahedral shape, while that around $\mathrm{Cr}(2)$ has a regular icosahedral shape, as in many other Al-rich transition-metal compounds (Kripyakevich, 1977). The polyhedra around the other six Al sites all each have 12 vertices and are deformed icosahedra or bicapped pentagonal prisms $[\mathrm{Al}(7)]$. The polyhedra around the $\mathrm{Cr}(1)$ sites are linked parallel to the hexagonal plane in groups of three via common Al atoms and these units are linked perpendicular to the hexagonal plane to form columns along [001] at $x=0, y=0$ via $\mathrm{Cr}(2)$ icosahedra (Fig. 2). Adjacent columns are connected via interpenetrated $\mathrm{Al}(6)$ and Yb polyhedra. All other Al polyhedra interpenetrate with $\mathrm{Cr}(1), \mathrm{Cr}(2)$, $\mathrm{Al}(6)$ or Yb polyhedra. The architecture of the columns of Cr polyhedra (without the Yb atoms) resembles that of hexagonal $\mathrm{V}_{4} \mathrm{Al}_{23}$ (Smith \& Ray, 1957). This structure also contains two transition-metal sites. One of these is icosahedrally coordinated with Al atoms [as is

Fig. 1. Structural projection of hexagonal $\mathrm{Yb}_{6} \mathrm{Cr}_{4+x} \mathrm{Al}_{43-x}$ along [010] showing the coordination polyhedra.

Fig. 2. Coordination polyhedra around $\mathrm{Cr}(1)$ (without the two Yb atoms) and $\mathrm{Cr}(2)$ in $\mathrm{Yb}_{6} \mathrm{Cr}_{4+x} \mathrm{Al}_{43-x}$ viewed along the [001] direction. The $\operatorname{Cr}(2)$ icosahedra are positioned on the plane $z=0$.

(a)

(b)

Fig. 3. Coordination polyhedra around (a) $\mathrm{Cr}(1)$ (without the two Yb atoms) and $\mathrm{Cr}(2)$ in $\mathrm{Yb}_{6} \mathrm{Cr}_{4+x} \mathrm{Al}_{43-x}$ viewed along the [100] direction and (b) around both V sites in $\mathrm{V}_{4} \mathrm{Al}_{23}$ viewed along the [310] direction. $\operatorname{The} \mathrm{Cr}(2)$ and V icosahedra are positioned on the plane $z=0$.
$\mathrm{Cr}(2)$ in the present compound], while the other has eight Al and two V neighbours, thus forming polyhedra which are of the same shape as those of $\mathrm{Cr}(1)$ without the two Yb atoms (Schubert, 1964). These polyhedra are arranged into columns similar to those in $\mathrm{Yb}_{6} \mathrm{Cr}_{4+x} \mathrm{Al}_{43-x}$ at $x=0, y=0$; however, the columns are connected via interpenetrated V -centred $\left[\mathrm{Al}_{8} \mathrm{~V}_{2}\right]$ polyhedra (Fig. 3). The similarity of the stacking in these two compounds is reflected in their cell dimensions, which do not differ much along the hexagonal axes $\left(\mathrm{V}_{4} \mathrm{Al}_{23}: c=17.04 \AA\right)$.

Experimental

The sample was prepared by arc melting and annealing at 773 K for three weeks.

Crystal data

$\mathrm{Yb}_{6} \mathrm{Cr}_{5.76} \mathrm{Al}_{41.24}$
$M_{r}=2450.45$
Hexagonal
$\mathrm{P}_{3} / \mathrm{mcm}$
$a=10.867$ (1) \AA
$c=17.554$ (2) \AA
$V=1795.3(3) \AA^{3}$
$Z=2$
$D_{x}=4.532 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Philips PW1100 diffractometer
$\omega-2 \theta$ scans
Absorption correction:
analytical (LSABS;
Blanc, Schwarzenbach \&
Flack, 1991)
$T_{\text {min }}=0.350, T_{\max }=$ 0.551

3620 measured reflections
980 independent reflections
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 28 reflections
$\theta=7.5-17^{\circ}$
$\mu=18.148 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Needle
$0.064 \times 0.040 \times 0.032 \mathrm{~mm}$
Silver

760 observed reflections

$$
[|F|>3 \sigma(|F|)]
$$

$R_{\text {int }}=0.085$
$\theta_{\text {max }}=29.84^{\circ}$
$h=0 \rightarrow 13$
$k=0 \rightarrow 13$
$l=0 \rightarrow 24$
2 standard reflections frequency: 60 min intensity variations: 1.5 , 1.6\%

Refinement

Refinement on F
$R=0.053$
$w R=0.036$
$S=1.91$
760 reflections
53 parameters
$w=1 / \sigma^{2}(|F|)$
$(\Delta / \sigma)_{\max }=0.0001$
$\Delta \rho_{\text {max }}=7.1 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-5.0 \mathrm{e}^{-3}$

Extinction correction:

 Zachariasen (1968)Extinction coefficient: $g=0.06$ (2)
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

$\mathrm{Al}(1)$	$24(l)$	$0.2341(4)$	$0.3952(4)$	$0.1635(2)$	$0.009(1)$
$\mathrm{Al}(2)$	$12(k)$	$0.1560(5)$	0	$0.1149(3)$	$0.011(2)$
$\mathrm{Al}(3)$	$12(k)$	$0.2529(5)$	0	$0.5289(3)$	$0.009(2)$
$\mathrm{Al}(4)$	$12(j)$	$0.1481(6)$	$0.5472(6)$	$1 / 4$	$0.010(2)$
$\mathrm{Al}(5)$	$12(i)$	$0.2495(3)$	$2 x$	0	$0.029(2)$
$\mathrm{Al}(6) \dagger$	$8(h)$	$1 / 3$	$2 / 3$	$0.1313(2)$	$0.010(1)$
$\mathrm{Al}(7)$	$6(\mathrm{~g})$	$0.8498(7)$	0	$1 / 4$	$0.006(2)$

$\dagger \mathrm{Al}(6)$ site occupied by 44 (2)\% Cr; set isotropic.

Table 2. Interatomic distances ($<4 \AA$)

$\mathrm{Yb}-\mathrm{Al}(4)$	$\times 2$	3.044 (6)	$\mathrm{Al}(2)-\mathrm{Al}(7)$	$\times 2$	2.897 (6)
$\mathrm{Yb}-\mathrm{Al}(5)$	$\times 2$	3.057 (5)	$\mathrm{Al}(2)-\mathrm{Al}(2)$	$\times 2$	2.936 (7)
$\mathrm{Yb}-\mathrm{Al}(1)$	$\times 2$	3.062 (4)	$\mathrm{Al}(2)-\mathrm{Yb}$		3.389 (4)
$\mathrm{Yb}-\mathrm{Al}(3)$		3.190 (4)	$\mathrm{Al}(2)-\mathrm{Al}(5)$	$\times 2$	3.900 (8)
$\mathrm{Yb}-\mathrm{Al}(6)$	$\times 2$	3.219 (1)	$\mathrm{Al}(3)-\mathrm{Al}(2)$		2.737 (6)
$\mathrm{Yb}-\mathrm{Al}(1)$	$\times 2$	3.232 (8)	$\mathrm{Al}(3)-\mathrm{Al}(5)$	$\times 2$	2.740 (9)
$\mathrm{Yb}-\mathrm{Al}(3)$		3.270 (4)	$\mathrm{Al}(3)-\mathrm{Cr}(2)$		2.795 (8)
$\mathrm{Yb}-\mathrm{Al}(5)$	$\times 2$	3.369 (5)	$\mathrm{Al}(3)-\mathrm{Al}(2)$	$\times 2$	2.837 (11)
$\mathrm{Yb}-\mathrm{Al}(2)$		3.389 (4)	$\mathrm{Al}(3)-\mathrm{Al}(1)$	$\times 2$	2.885 (6)
$\mathrm{Yb}-\mathrm{Yb}$		3.444 (1)	$\mathrm{Al}(3)-\mathrm{Al}(3)$	$\times 2$	2.930 (12)
$\mathrm{Yb}-\mathrm{Cr}(1)$		3.498 (2)	$\mathrm{Al}(3)-\mathrm{Yb}$		3.190 (4)
$\mathrm{Cr}(1)-\mathrm{Al}(7)$	$\times 2$	2.478 (4)	$\mathrm{Al}(3)-\mathrm{Yb}$		3.270 (4)
$\mathrm{Cr}(1)-\mathrm{Al}(2)$	$\times 2$	2.638 (5)	$\mathrm{Al}(4)-\mathrm{Cr}(1)$		2.681 (6)
$\mathrm{Cr}(1)-\mathrm{Al}(1)$	$\times 4$	2.681 (8)	$\mathrm{Al}(4)-\mathrm{Al}(1)$	$\times 2$	2.730 (14)
$\mathrm{Cr}(1)-\mathrm{Al}(4)$	$\times 2$	2.681 (6)	$\mathrm{Al}(4)-\mathrm{Al}(6)$	$\times 2$	2.732 (12)
$\mathrm{Cr}(1)-\mathrm{Yb}$	$\times 2$	3.498 (2)	$\mathrm{Al}(4)-\mathrm{Al}(1)$	$\times 2$	2.764 (6)
$\mathrm{Cr}(2)-\mathrm{Al}(2)$	$\times 6$	2.635 (6)	$\mathrm{Al}(4)-\mathrm{Al}(4)$		2.787 (17)
$\mathrm{Cr}(2)-\mathrm{Al}(3)$	$\times 6$	2.795 (8)	$\mathrm{Al}(4)-\mathrm{Yb}$	$\times 2$	3.044 (6)
$\mathrm{Al}(1)-\mathrm{Al}(6)$		2.647 (8)	$\mathrm{Al}(4)-\mathrm{Al}(4)$	$\times 2$	3.062 (24)
$\mathrm{Al}(1)-\mathrm{Cr}(1)$		2.681 (8)	$\mathrm{Al}(5)-\mathrm{Al}(5)$	$\times 2$	2.734 (13)
$\mathrm{Al}(1)-\mathrm{Al}(2)$		2.709 (8)	$\mathrm{Al}(5)-\mathrm{Al}(3)$	$\times 2$	2.740 (9)
$\mathrm{Al}(1)-\mathrm{Al}(4)$		2.730 (14)	$\mathrm{Al}(5)-\mathrm{Al}(6)$	$\times 2$	2.794 (6)
$\mathrm{Al}(1)-\mathrm{Al}(4)$		2.764 (6)	$\mathrm{Al}(5)-\mathrm{Yb}$	$\times 2$	3.057 (5)
$\mathrm{Al}(1)-\mathrm{Al}(7)$		2.792 (9)	$\mathrm{Al}(5)-\mathrm{Al}(1)$	$\times 2$	3.057 (4)
$\mathrm{Al}(1)-\mathrm{Al}(3)$		2.885 (6)	$\mathrm{Al}(5)-\mathrm{Yb}$	$\times 2$	3.369 (5)
$\mathrm{Al}(1)-\mathrm{Al}(1)$		3.032 (7)	$\mathrm{Al}(5)-\mathrm{Al}(2)$	$\times 2$	3.900 (8)
$\mathrm{Al}(1)-\mathrm{Al}(1)$		3.038 (4)	$\mathrm{Al}(6)-\mathrm{Al}(1)$	$\times 3$	2.647 (8)
$\mathrm{Al}(1)-\mathrm{Al}(5)$		3.057 (4)	$\mathrm{Al}(6)-\mathrm{Al}(4)$	$\times 3$	2.732 (12)
$\mathrm{Al}(1)-\mathrm{Yb}$		3.062 (4)	$\mathrm{Al}(6)-\mathrm{Al}(5)$	$\times 3$	2.794 (6)
$\mathrm{Al}(1)-\mathrm{Yb}$		3.232 (8)	$\mathrm{Al}(6)-\mathrm{Yb}$	$\times 3$	3.219 (1)
$\mathrm{Al}(2)-\mathrm{Cr}(2)$		2.635 (6)	$\mathrm{Al}(7)-\mathrm{Cr}(1)$	$\times 2$	2.478 (4)
$\mathrm{Al}(2)-\mathrm{Cr}(1)$		2.638 (5)	$\mathrm{Al}(7)-\mathrm{Al}(1)$	$\times 4$	2.792 (9)
$\mathrm{Al}(2)-\mathrm{Al}(1)$	$\times 2$	2.709 (8)	$\mathrm{Al}(7)-\mathrm{Al}(7)$	$\times 2$	2.827 (9)
$\mathrm{Al}(2)-\mathrm{Al}(3)$		2.737 (6)	$\mathrm{Al}(7)-\mathrm{Al}(2)$	$\times 4$	2.897 (6)
$\mathrm{Al}(2)-\mathrm{Al}(3)$	$\times 2$	2.837 (11)			

The structure was solved by MULTAN87 (Debaerdemaeker, Germain, Main, Tate \& Woolfson, 1987) and refined by least-squares techniques varying the scale factor, isotropic extinction, atomic positional and anisotropic displacement parameters. The $\mathrm{Al}(6)$ site, about half occupied by Cr , was set isotropic and its occupancy parameter was refined. Xtal3.2 (Hall, Flack \& Stewart, 1992) was used for the data reduction and structure refinement. The high value of the displacement parameter of the $\mathrm{Al}(5)$ site has been noted. Refinement of the occupancy and displacement parameters of the $\mathrm{Al}(5)$ site did not improve the results.

> Lists of structure factors and anisotropic displacement parameters have been deposited with the IUCr (Reference: DU1079). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Blanc, E., Schwarzenbach, D. \& Flack, H. D. (1991). J. Appl. Cryst. 24, 1035-1041.
Debaerdemaeker, T., Germain, G., Main, P., Tate, C. \& Woolfson, M. M. (1987). MULTAN87. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

Hall, S. R., Flack, H. D. \& Stewart, J. M. (1992). Editors. Xtal3.2. Users Manual. Univs. of Western Australia, Australia, Geneva, Switzerland, and Maryland, USA.
Kripyakevich, P. I. (1977). Structure Types of Intermetallic Compounds, pp. 92-99. Moscow: Nauka.
Rykhal', R. M., Zarechnyuk, O. S. \& Mats'kiv, O. P. (1979). Vestn. L'viv Univ. Ser. Khim. 21, 46-49.
Schubert, K. (1964). Kristallstrukturen zweikomponentiger Phasen, pp. 294-295. Berlin: Springer-Verlag.
Smith, J. F. \& Ray, A. E. (1957). Acta Cryst. 10, 169-172.
Zachariasen, W. H. (1968). Acta Cryst. A24, 212-216.
Zarechnyuk, O. S., Rykhal', R. M. \& German, N. V. (1971). Visn. L'viv Univ. Ser. Khim. 12, 10-12.
Zarechnyuk, O. S., Yanson, T. I., Ostrovskaya, O. I. \& Shevchuk, L. P. (1988). Visn. L'viv Univ. Ser. Khim. 29, 44-47.

Acta Cryst. (1994). C50, 1531-1536
Rietveld Kefinement of the Structures of Dry-Synthesized $M \mathrm{Fe}^{\mathrm{III}} \mathrm{Si}_{2} \mathrm{O}_{6}$ Leucites ($M=\mathbf{K}, \mathbf{R b}, \mathbf{C s}$) by Synchrotron X-ray Powder Diffraction

A. M. T. Bell
SERC Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD, England

C. M. B. Henderson

Department of Geology, University of Manchester, Manchester M13 9PL, England
(Received 25 January 1994; accepted 13 April 1994)

Abstract

Analyses of high-resolution synchrotron X-ray powder diffraction patterns of dry-synthesized $M \mathrm{Fe}^{\text {III }} \mathrm{Si}_{2} \mathrm{O}_{6}$ leucites ($M=\mathrm{K}, \mathrm{Rb}, \mathrm{Cs}$) showed that the K - and Rb containing leucites (iron potassium silicate, $\mathrm{KFeSi}_{2} \mathrm{O}_{6}$, and iron rubidium silicate, $\mathrm{RbFeSi}_{2} \mathrm{O}_{6}$) each have a tetragonal $I 4_{1} / a$ structure and the Cs-containing leucite (caesium iron silicate, $\mathrm{CsFeSi}_{2} \mathrm{O}_{6}$) has a cubic Ia $\overline{3} d$ structure. The structures of these materials have been refined by the Rietveld method. In $\mathrm{CsFeSi}_{2} \mathrm{O}_{6}$ leucite, $\mathrm{Fe}^{\mathrm{II}}$ and Si are disordered on tetrahedral framework sites as required by space-group constraints. In $\mathrm{KFeSi}_{2} \mathrm{O}_{6}$ leucite, Fe shows significant ordering and is concentrated on the T_{3} tetrahedral site. $\mathrm{RbFeSi}_{2} \mathrm{O}_{6}$ leucite shows less pronounced T-site ordering reflecting the fact that it is closer to the tetragonal-cubic phase transition at which the T sites become identical.

